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I. INTRODUCTION

Observations of approximately kiloelectronvolt auroral ions flowing

parallel to the magnetic field have been reported by a number of experimenters

(see Shelley et al., 1976 a and b; Sharp et al., 1977; Ghielmetti et al.,

1978, 1979; Gorney et al., 1981). Ion distributions with strong perpendicular

anisotropies (ion conics) suggestive of cyclotron heating are also common

(Sharp et al., 1977; Klumpar, 1979; Gorney et al., 1981; Kintner and Gorney,

1982). Recent theoretical interest in possible instabilities arising from

free energy in these auroral ion distributions (e.g., Kintner, 1980; Cattell

and Hudson, 1982; Roth and Hudson, 1982; Kaufman and Kintner, 1982) has

required numerical modeling of the ion distributions, and a number of ion-mode

instabilities have been identified.

Upflowing ion beams are generally considered to be the result of acceler-

ation of ionospheric ions by electrical potential drops along the auroral

field lines, and typically have been modeled as a hot ion population drifting

upward with respect to cold background ions and electrons (e.g., Kaufman and

Kintner, 1982).

Downflowing ion beams are quite rare compared to upflowing beams

(Ghielmetti et al., 1979), but downflowing ions in the low-altitude cusp

region are quite ccmmon, and can have beam-like distributions (Shelley et al.,

1976 a and b; Reiff et al., 1977; Burch et al., 1982). The magnetic defocus-

sing of these downstreaming distributions can lead to the formation of rings

of ions in perpendicular velocity as well as positive gradients in parallel

velocity.

Ion conics are upflowing ion distributions with strong perpendicular

anisotropies. Conics are thought to be formed by perpendicular heating at low

altitudes by EIC or VLF waves (Ungstrup et al., 1979; Lysak et al., 1980;

Chang and Coppi, 1981; Dusenbery and Lyons, 1981; Okuda and Abdalla, 1981) or

perhaps by stochastic energization by small-scale electrostatic fields

(Lennartsson, 1980; Greenspan and Whipple, 1982). Ion conics are observed at

all local times in the auroral latitudes, and are thought to be generated near

5



or below 2000 km altitude (Klumpar, 1979; Gorney et al., 1981). Conics

typically have power-law energy spectra over the energy range from 10 eV to

4 keV (Fennell et al., 1979; Klumpar, 1979). Since conics are generated above

the atmosphere, their angular distributions contain an atmospheric loss cone.

At altitudes much higher than 2000 km, ion conics have relative flux maxima at

pitch angles between 90* and 1800 (i.e., a conical distribution) due to the

magnetic focussing of an original pancake distribution. Simultaneous obser-

vations of upflowing ion conics and downstreaming cusp ions are common on the

dayside, although few of these observations have been reported in the litera-

ture. An example of such an event is presented in Figures 1 and 2 of Cattell

and Hudson (1982).

An ion distribution from the period discussed by Cattell and Hudson is

presented in Figure I of this report. This ion distribution is coincident

with wave emissions near the lower hybrid resonance frequency, which can be

described in terms of a flute mode instability. Cattell and Hudson argued

that the ion conic population is responsible for the observed positive velo-

city gradient in the ion distribution that is necessary for instability.

Examination of these data shows that the ion conic does not contribute a

positive perpendicular velocity gradient to the ion distribution, but that two

regions of positive perpendicular velocity gradient do exist in the observed

distribution, because of the atmospheric loss cone at high energy and the

downstreaming energetic ions. Two other data examples are presented in this

report, showing a downstreaming ion event and an ion conic event separately.

The downstreaming ion event shows a ring of ions even in the absence of an ion

conic. The ion conic example shows no positive velocity gradients other than

the high-energy loss cone.

6
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I. DATA

The upper panel of Figure I shows a contour plot of the energetic ion

velocity space distribution observed by the S3-3 satellite at 01:08:15 U.T.

(±10 sec) on 18 July 1976. In this plot the +v axis corresponds to down-

flowing particles. The distribution function contours are logarithmic (the

contour labeled 7 corresponds to a distribution function value of 107

sec 3 /km 6 ). At this time S3-3 was near 7800 km altitude, and at 10.7 hr local

time.

Several interesting features are apparent in this ion distribution, which

is characteristic of the ion distributions observed throughout the 1-min

period of interest. First, the atmospheric loss cone is apparent at upflowing

velocities greater than 200 km/sec. The computed extent of the 100 km loss

cone is labeled aLC on the figure. The tightly packed contours at velocities

less than 250 km/sec in the upflowing hemisphere represent the typical

signature of an ion conic. The ion conic extends to energies of about 290 eV,

and no ion conic exceeds 470 eV in the entire period in which wave emissions

were observed. This conic has a relative flux maximum at a pitch angle of

about 1250. The remainder of the ion distribution is isotropic in pitch

angle, but with a ring of ions in the downflowing hemisphere.

This ion ring is outlined by the contour labeled 7, and close inspection

of the density distribution either in the downflowing or perpendicular direc-

tion reveals a relative minimum at about 250 km/sec and a relative maximum at

about 400 km/sec.

Perpendicular velocity gradients were computed for these data, and the

boundaries between regions of 9f/av > 0 and avf/Iv < 0 are shown in the lower

panel of Figure 1. The shaded region corresponds to 9f/v i < 0; the unshaded

regions have the positive gradients required for instability. The atmospheric

loss cone, the ion conic, and the downflowing beam regions are outlined with a

thin solid line, a thin dashed line, and a dotted line respectively. As

expected, the loss cone is a region of 3f/av I > 0, whereas the ion conic has

af/3v < 0. The low-velocity edge of the downflowing ion beam, extending to

9



900 pitch angle, is a region of positive perpendicular gradient. It is impor-

tant to note that the unshaded regions represent the only regions that can

contribute to the flute mode instability.

Cattell and Hudson, describing the quantity ff(Vll , v,) dvll for a time

period surrounding 1:08:26 U.T., noted a region of positive slope between 200

and 300 km/sec perpendicular velocity, which they attributed to the presence

of the ion conic. It is clear from the bottom panel of Figure I that the

observed positive slope must be due to the downflowing ion beam, and not the

upflowing ion conic. This point is seen even more clearly in Figure 2, which

directly compares the roles of the downflowing beam and upflowing ion conic in

producing a positive slope in perpendicular velocity. (Note that data from

the period surrounding 1:08:15 are plotted in these figures. This period was

chosen for study because the data are more time stationary than at 1:08:26 and

well within the interval when the waves were observed.)

The two panels of Figure 2 show ion distributions for the same data

presented in Figure 1. The left panel compares the upflowing ion velocity

distribution (dashed line) with that at 90* pitch angle (solid line); the

right panel compares the 0* pitch angle (dashed line) with the perpendicular

flux (solid line). The broad arrow in the left panel indicates the highest

velocity at which conical ion distributions were observed. The perpendicular

ion distribution function has a peak near 400 km/sec and a positive slope

between 200 and 300 km/sec. The same spectral shape is also apparent in the

downflowing population in the right panel. The ion conic has a steep,

monotonically decreasing spectrum over the entire energy rane in which it

maintains a conical pitch angle distribution. Clearly, the perpendicular

spectrum is due to the magnetic defocussing of the downflowing ion distribu-

tion, and the ion conic can only decrease the positive gradient between 200

and 400 km/sec.

Figure 3 shows independent examples of downflowing ions (a) and an up-

flowing ion conic (b). Both examples are from S3-3 near apogee, at high

latitude on the dayside. The downflowing ions have a peak near 400 km/sec,

10
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Fig. 2. Two plots of ion density as a function of velocity for the data shown

in Figure 1. The left panel compares the upflowing ion conic spec-
trum with the perpendicular (90* pitch angle) spectrum. The right

panel compares the downflowing (00 pitch angle) spectrum with the

perpendicular spectrum.
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similar to Figure 1. Indeed the regions of velocity that contribute to posi-

tive perpendicular velocity gradients are almost identical to those in

Figure 1, even though there is no evidence of an ..j;- conic in this case. On

the other hand, the ion conic example in Figure 3b has no downflowing beam,

and the only region that contributes a positive perpendicular velocity

gradient is the high-energy loss cone. Again, the key element in the

formation of a ring distribution is the downflowing ion population, not the

upflowing ion conic.
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III. CONCLUSIONS

Auroral ion distributions possess a number of features that might lead to

plasma wave instabilities. The stability of upflowing accelerated ion beams

has already been treated in some detail. Perhaps the downflowing ion beams

presented in this report might also be subject to similar beam instabilities.

The downflowing ion beams, under the influence of the defocussing magnetic

* mirror force, also form rings of energetic ions, which have regions of posi-

tive perpendicular velocity gradients, making them potentially unstable to

flute mode instabilities. Upflowing ion conics, on the other hand, neither

have peaked energy spectra nor are well represented by ion ring models.

15
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting

experimental and theoretical investigations necessary for the evaluation and

application of scientitic advances to new military space systems. Versatility

and flexibility have been developed to a high degree by the laboratory person-

nel in dealing with the many problems encountered in the nation's rapidly

developing space systems. Expertise in the latest scientific developments is

vital to the accomplishment of tasks related to these problems. The labora-

tories that contribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat
transfer and flight dynamics; chemical and electric propulsion, propellant

chemistry, environmental hazards, trace detection; spacecraft structural

mechanics, contamination, thermal and structural control; high temperature

thermomechanics, gas kinetics and radiation; cw and pulsed laser development

including chemical kinetics, spectroscopy, optical resonators, beam control,

atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmo-
spheric optics, light scattering, state-specific chemical reactions and radia-

tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,

laser optoelectronics, solar cell physics, battery electrochemistry, space
vacuum and radiation effects on iterials, lubrication and surface phenomena,

thermionic emission, photosensit. ,e materials and detectors, atomic frequency

standards, and environmental chemistry.

Computer Science Laboratory: Program verification, program translation,

performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence and

microelectronics applications.

Electronics Research Laboratory: Microelectronics, GaAs low noise and

power devices, semiconductor lasers, electromagnetic and optical propagation
phenomena, quantum electronics, laser communications, lidar, and electro-

optics; communication sciences, applied electronics, semiconductor crystal and

device physics, radiometric imaging; millimeter wave, microwave technology,

and RF systems research.

Materials Sciences La'oratory: Development of new materials: metal

matrix composites, polymers, and new forms of carbon; nondestructive evalua-

tion, component failure analysis and reliability; fracture mechanics and

stress corrosion; analysis and evaluation of materials at cryogenic and

elevated temperatures as well as in space and enemy-induced environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray phys-

ics, wave-particle interactions, magnetospheric plasma waves; atmospheric and
ionospheric physics, density and composition of the upper atmosphere, remote

sensing using atmospheric radiation; solar physics, infrared astronomy,

infrared signature analysis; effects of solar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;

effects of electromagnetic and particulate radiations on space systems; space

Instrumentation.
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